[ChoiJH]Thrap 3 docks on phosphoserine 273 of PPAR γ and controls diabetic gene programming

Abstract : Phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) at Ser273 by cyclin-dependent kinase 5 (CDK5) in adipose tissue stimulates insulin resistance, but the underlying molecular mechanisms are unclear. We show here that Thrap3 (thyroid hormone receptor-associated protein 3) can directly interact with PPARγ when it is phosphorylated at Ser273, and this interaction controls the diabetic gene programming mediated by the phosphorylation of PPARγ. Knockdown of Thrap3 restores most of the genes dysregulated by CDK5 action on PPARγ in cultured adipocytes. Importantly, reduced expression of Thrap3 in fat tissue by antisense oligonucleotides (ASOs) regulates a specific set of genes, including the key adipokines adiponectin and adipsin, and effectively improves hyperglycemia and insulin resistance in high-fat-fed mice without affecting body weight. These data indicate that Thrap3 plays a crucial role in controlling diabetic gene programming and may provide opportunities for the development of new therapeutics for obesity and type 2 diabetes.

Authors : Choi, JH[Choi, Jang Hyun]; Choi, SS[Choi, Sun-Sil]; Kim, ES[Kim, Eun Sun]; Jedrychowski, MP[Jedrychowski, Mark P.]; Yang, YR[Yang, Yong Ryoul]; Jang, HJ[Jang, Hyun-Jun]; Suh, PG[Suh, Pann-Ghill]; Banks,AS[Banks, Alexander S.]; Gygi, SP[Gygi, Steven P.]; Spiegelman, BM[Spiegelman, Bruce M.]

Issue Date : 201411
 
Publisher : SPRINGER
 
Citation : DEVELOPMENT GENES AND EVOLUTION, v.28, no.21, pp.2361 - 2369